国产熟女一区二区五月婷-又爽又黄又无遮挡网站-亚洲国产精品视频在线播放-国内偷拍国内精品网999

當(dāng)前位置:首頁(yè) > 最新資訊 > 行業(yè)資訊

機(jī)器學(xué)習(xí)的基本概念、流派和常見(jiàn)算法

一、機(jī)器學(xué)習(xí)(ML)概覽

1. 什么是ML?

機(jī)器通過(guò)分析大量數(shù)據(jù)來(lái)進(jìn)行學(xué)習(xí)。比如說(shuō),不需要通過(guò)編程來(lái)識(shí)別貓或人臉,它們可以通過(guò)使用圖片來(lái)進(jìn)行訓(xùn)練,從而歸納和識(shí)別特定的目標(biāo)。

2. ML和AI的關(guān)系

ML是一種重在尋找數(shù)據(jù)中的模式并使用這些模式來(lái)做出預(yù)測(cè)的研究和算法的門(mén)類(lèi)。ML是AI領(lǐng)域的一部分,并且和知識(shí)發(fā)現(xiàn)與數(shù)據(jù)挖掘有所交集。

3. ML的工作方式

①選擇數(shù)據(jù):將你的數(shù)據(jù)分成三組:訓(xùn)練數(shù)據(jù)、驗(yàn)證數(shù)據(jù)和測(cè)試數(shù)據(jù)

②模型數(shù)據(jù):使用訓(xùn)練數(shù)據(jù)來(lái)構(gòu)建使用相關(guān)特征的模型

③驗(yàn)證模型:使用你的驗(yàn)證數(shù)據(jù)接入你的模型

④測(cè)試模型:使用你的測(cè)試數(shù)據(jù)檢查被驗(yàn)證的模型的表現(xiàn)

⑤使用模型:使用完全訓(xùn)練好的模型在新數(shù)據(jù)上做預(yù)測(cè)

⑥調(diào)優(yōu)模型:使用更多數(shù)據(jù)、不同的特征或調(diào)整過(guò)的參數(shù)來(lái)提升算法的性能表現(xiàn)

4. ML所處的位置

①傳統(tǒng)編程:軟件工程師編寫(xiě)程序來(lái)解決問(wèn)題。首先存在一些數(shù)據(jù)→為了解決一個(gè)問(wèn)題,軟件工程師編寫(xiě)一個(gè)流程來(lái)告訴機(jī)器應(yīng)該怎樣做→計(jì)算機(jī)遵照這一流程執(zhí)行,然后得出結(jié)果

②統(tǒng)計(jì)學(xué):分析師比較變量之間的關(guān)系

③ML:數(shù)據(jù)科學(xué)家使用訓(xùn)練數(shù)據(jù)集來(lái)教計(jì)算機(jī)應(yīng)該怎么做,然后系統(tǒng)執(zhí)行該任務(wù)。首先存在大數(shù)據(jù)→機(jī)器會(huì)學(xué)習(xí)使用訓(xùn)練數(shù)據(jù)集來(lái)進(jìn)行分類(lèi),調(diào)節(jié)特定的算法來(lái)實(shí)現(xiàn)目標(biāo)分類(lèi)→該計(jì)算機(jī)可學(xué)習(xí)識(shí)別數(shù)據(jù)中的關(guān)系、趨勢(shì)和模式

④智能應(yīng)用:智能應(yīng)用使用AI所得到的結(jié)果,如圖是一個(gè)精準(zhǔn)農(nóng)業(yè)的應(yīng)用案例示意,該應(yīng)用基于無(wú)人機(jī)所收集到的數(shù)據(jù)

5. ML的實(shí)際應(yīng)用

ML有很多應(yīng)用場(chǎng)景,這里給出了一些示例,你會(huì)怎么使用它?

快速三維地圖測(cè)繪和建模:要建造一架鐵路橋,PwC 的數(shù)據(jù)科學(xué)家和領(lǐng)域?qū)<覍L應(yīng)用到了無(wú)人機(jī)收集到的數(shù)據(jù)上。這種組合實(shí)現(xiàn)了工作成功中的精準(zhǔn)監(jiān)控和快速反饋。

增強(qiáng)分析以降低風(fēng)險(xiǎn):為了檢測(cè)內(nèi)部交易,PwC 將ML和其它分析技術(shù)結(jié)合了起來(lái),從而開(kāi)發(fā)了更為全面的用戶概況,并且獲得了對(duì)復(fù)雜可疑行為的更深度了解。

預(yù)測(cè)表現(xiàn)最佳的目標(biāo):PwC 使用ML和其它分析方法來(lái)評(píng)估 Melbourne Cup 賽場(chǎng)上不同賽馬的潛力。

二、ML的演化

幾十年來(lái),AI研究者的各個(gè)「部落」一直以來(lái)都在彼此爭(zhēng)奪主導(dǎo)權(quán),參閱機(jī)器之心文章《華盛頓大學(xué)教授 Pedro Domingos:ML領(lǐng)域五大流派(附演講 ppt)》?,F(xiàn)在是這些部落聯(lián)合起來(lái)的時(shí)候了嗎?他們也可能不得不這樣做,因?yàn)楹献骱退惴ㄈ诤鲜菍?shí)現(xiàn)真正通用AI(AGI)的唯一方式。這里給出了ML方法的演化之路以及未來(lái)的可能模樣。

1. 五大流派

①符號(hào)主義:使用符號(hào)、規(guī)則和邏輯來(lái)表征知識(shí)和進(jìn)行邏輯推理,最喜歡的算法是:規(guī)則和決策樹(shù)

②貝葉斯派:獲取發(fā)生的可能性來(lái)進(jìn)行概率推理,最喜歡的算法是:樸素貝葉斯或馬爾可夫

③聯(lián)結(jié)主義:使用概率矩陣和加權(quán)神經(jīng)元來(lái)動(dòng)態(tài)地識(shí)別和歸納模式,最喜歡的算法是:神經(jīng)網(wǎng)絡(luò)

④進(jìn)化主義:生成變化,然后為特定目標(biāo)獲取其中最優(yōu)的,最喜歡的算法是:遺傳算法

⑤Analogizer:根據(jù)約束條件來(lái)優(yōu)化函數(shù)(盡可能走到更高,但同時(shí)不要離開(kāi)道路),最喜歡的算法是:支持向量機(jī)

2. 演化的階段

1980 年代

主導(dǎo)流派:符號(hào)主義

架構(gòu):服務(wù)器或大型機(jī)

主導(dǎo)理論:知識(shí)工程

基本決策邏輯:決策支持系統(tǒng),實(shí)用性有限

1990 年代到 2000 年

主導(dǎo)流派:貝葉斯

架構(gòu):小型服務(wù)器集群

主導(dǎo)理論:概率論

分類(lèi):可擴(kuò)展的比較或?qū)Ρ?,?duì)很多任務(wù)都足夠好了

2010 年代早期到中期

主導(dǎo)流派:聯(lián)結(jié)主義

架構(gòu):大型服務(wù)器農(nóng)場(chǎng)

主導(dǎo)理論:神經(jīng)科學(xué)和概率

識(shí)別:更加精準(zhǔn)的圖像和聲音識(shí)別、翻譯、情緒分析等

3. 這些流派有望合作,并將各自的方法融合到一起

2010 年代末期

主導(dǎo)流派:聯(lián)結(jié)主義+符號(hào)主義

架構(gòu):很多云

主導(dǎo)理論:記憶神經(jīng)網(wǎng)絡(luò)、大規(guī)模集成、基于知識(shí)的推理

簡(jiǎn)單的問(wèn)答:范圍狹窄的、領(lǐng)域特定的知識(shí)共享

2020 年代+

主導(dǎo)流派:聯(lián)結(jié)主義+符號(hào)主義+貝葉斯+……

架構(gòu):云計(jì)算和霧計(jì)算

主導(dǎo)理論:感知的時(shí)候有網(wǎng)絡(luò),推理和工作的時(shí)候有規(guī)則

簡(jiǎn)單感知、推理和行動(dòng):有限制的自動(dòng)化或人機(jī)交互

2040 年代+

主導(dǎo)流派:算法融合

架構(gòu):無(wú)處不在的服務(wù)器

主導(dǎo)理論:最佳組合的元學(xué)習(xí)

感知和響應(yīng):基于通過(guò)多種學(xué)習(xí)方式獲得的知識(shí)或經(jīng)驗(yàn)采取行動(dòng)或做出回答

三、ML的算法

你應(yīng)該使用哪種ML算法?這在很大程度上依賴于可用數(shù)據(jù)的性質(zhì)和數(shù)量以及每一個(gè)特定用例中你的訓(xùn)練目標(biāo)。不要使用最復(fù)雜的算法,除非其結(jié)果值得付出昂貴的開(kāi)銷(xiāo)和資源。這里給出了一些最常見(jiàn)的算法,按使用簡(jiǎn)單程度排序。更多內(nèi)容可參閱機(jī)器之心的文章《ML算法集錦:從貝葉斯到深度學(xué)習(xí)及各自優(yōu)缺點(diǎn)》和《經(jīng)驗(yàn)之談:如何為你的ML問(wèn)題選擇合適的算法?》

1. 決策樹(shù)(Decision Tree)

在進(jìn)行逐步應(yīng)答過(guò)程中,典型的決策樹(shù)分析會(huì)使用分層變量或決策節(jié)點(diǎn),例如,可將一個(gè)給定用戶分類(lèi)成信用可靠或不可靠。

優(yōu)點(diǎn):擅長(zhǎng)對(duì)人、地點(diǎn)、事物的一系列不同特征、品質(zhì)、特性進(jìn)行評(píng)估

場(chǎng)景舉例:基于規(guī)則的信用評(píng)估、賽馬結(jié)果預(yù)測(cè)

2. 支持向量機(jī)(Support Vector Machine)

基于超平面(hyperplane),支持向量機(jī)可以對(duì)數(shù)據(jù)群進(jìn)行分類(lèi)。

優(yōu)點(diǎn):支持向量機(jī)擅長(zhǎng)在變量 X 與其它變量之間進(jìn)行二元分類(lèi)操作,無(wú)論其關(guān)系是否是線性的

場(chǎng)景舉例:新聞分類(lèi)、手寫(xiě)識(shí)別。

3. 回歸(Regression)

回歸可以勾畫(huà)出因變量與一個(gè)或多個(gè)因變量之間的狀態(tài)關(guān)系。在這個(gè)例子中,將垃圾郵件和非垃圾郵件進(jìn)行了區(qū)分。

優(yōu)點(diǎn):回歸可用于識(shí)別變量之間的連續(xù)關(guān)系,即便這個(gè)關(guān)系不是非常明顯

場(chǎng)景舉例:路面交通流量分析、郵件過(guò)濾

4. 樸素貝葉斯分類(lèi)(Naive Bayes Classification)

樸素貝葉斯分類(lèi)器用于計(jì)算可能條件的分支概率。每個(gè)獨(dú)立的特征都是「樸素」或條件獨(dú)立的,因此它們不會(huì)影響別的對(duì)象。例如,在一個(gè)裝有共 5 個(gè)黃色和紅色小球的罐子里,連續(xù)拿到兩個(gè)黃色小球的概率是多少?從圖中最上方分支可見(jiàn),前后抓取兩個(gè)黃色小球的概率為 1/10。樸素貝葉斯分類(lèi)器可以計(jì)算多個(gè)特征的聯(lián)合條件概率。

優(yōu)點(diǎn):對(duì)于在小數(shù)據(jù)集上有顯著特征的相關(guān)對(duì)象,樸素貝葉斯方法可對(duì)其進(jìn)行快速分類(lèi)

場(chǎng)景舉例:情感分析、消費(fèi)者分類(lèi)

5. 隱馬爾可夫模型(Hidden Markov model)

顯馬爾可夫過(guò)程是完全確定性的——一個(gè)給定的狀態(tài)經(jīng)常會(huì)伴隨另一個(gè)狀態(tài)。交通信號(hào)燈就是一個(gè)例子。相反,隱馬爾可夫模型通過(guò)分析可見(jiàn)數(shù)據(jù)來(lái)計(jì)算隱藏狀態(tài)的發(fā)生。隨后,借助隱藏狀態(tài)分析,隱馬爾可夫模型可以估計(jì)可能的未來(lái)觀察模式。在本例中,高或低氣壓的概率(這是隱藏狀態(tài))可用于預(yù)測(cè)晴天、雨天、多云天的概率。

優(yōu)點(diǎn):容許數(shù)據(jù)的變化性,適用于識(shí)別(recognition)和預(yù)測(cè)操作

場(chǎng)景舉例:面部表情分析、氣象預(yù)測(cè)

6. 隨機(jī)森林(Random forest)

隨機(jī)森林算法通過(guò)使用多個(gè)帶有隨機(jī)選取的數(shù)據(jù)子集的樹(shù)(tree)改善了決策樹(shù)的精確性。本例在基因表達(dá)層面上考察了大量與乳腺癌復(fù)發(fā)相關(guān)的基因,并計(jì)算出復(fù)發(fā)風(fēng)險(xiǎn)。

優(yōu)點(diǎn):隨機(jī)森林方法被證明對(duì)大規(guī)模數(shù)據(jù)集和存在大量且有時(shí)不相關(guān)特征的項(xiàng)(item)來(lái)說(shuō)很有用

場(chǎng)景舉例:用戶流失分析、風(fēng)險(xiǎn)評(píng)估

7. 循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent neural network)

在任意神經(jīng)網(wǎng)絡(luò)中,每個(gè)神經(jīng)元都通過(guò) 1 個(gè)或多個(gè)隱藏層來(lái)將很多輸入轉(zhuǎn)換成單個(gè)輸出。循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)會(huì)將值進(jìn)一步逐層傳遞,讓逐層學(xué)習(xí)成為可能。換句話說(shuō),RNN 存在某種形式的記憶,允許先前的輸出去影響后面的輸入。

優(yōu)點(diǎn):循環(huán)神經(jīng)網(wǎng)絡(luò)在存在大量有序信息時(shí)具有預(yù)測(cè)能力

場(chǎng)景舉例:圖像分類(lèi)與字幕添加、政治情感分析

8. 長(zhǎng)短期記憶(Long short-term memory,LSTM)

與門(mén)控循環(huán)單元神經(jīng)網(wǎng)絡(luò)(gated recurrent unit nerual network):早期的 RNN 形式是會(huì)存在損耗的。盡管這些早期循環(huán)神經(jīng)網(wǎng)絡(luò)只允許留存少量的早期信息,新近的長(zhǎng)短期記憶(LSTM)與門(mén)控循環(huán)單元(GRU)神經(jīng)網(wǎng)絡(luò)都有長(zhǎng)期與短期的記憶。

換句話說(shuō),這些新近的 RNN 擁有更好的控制記憶的能力,允許保留早先的值或是當(dāng)有必要處理很多系列步驟時(shí)重置這些值,這避免了「梯度衰減」或逐層傳遞的值的最終 degradation。LSTM 與 GRU 網(wǎng)絡(luò)使得我們可以使用被稱(chēng)為「門(mén)(gate)」的記憶模塊或結(jié)構(gòu)來(lái)控制記憶,這種門(mén)可以在合適的時(shí)候傳遞或重置值。

優(yōu)點(diǎn):長(zhǎng)短期記憶和門(mén)控循環(huán)單元神經(jīng)網(wǎng)絡(luò)具備與其它循環(huán)神經(jīng)網(wǎng)絡(luò)一樣的優(yōu)點(diǎn),但因?yàn)樗鼈冇懈玫挠洃浤芰?,所以更常被使?/p>

場(chǎng)景舉例:自然語(yǔ)言處理、翻譯

9. 卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network)

卷積是指來(lái)自后續(xù)層的權(quán)重的融合,可用于標(biāo)記輸出層。

優(yōu)點(diǎn):當(dāng)存在非常大型的數(shù)據(jù)集、大量特征和復(fù)雜的分類(lèi)任務(wù)時(shí),卷積神經(jīng)網(wǎng)絡(luò)是非常有用的

場(chǎng)景舉例:圖像識(shí)別、文本轉(zhuǎn)語(yǔ)音、藥物發(fā)現(xiàn)

猜你喜歡